Abstract
Luminance maps are information-dense measurements that can be used to directly evaluate and derive a number of important lighting measures, and improve lighting design and practices. However, cost barriers have limited the uptake of luminance imaging devices. This study presents a low-cost custom luminance imaging device developed from a Raspberry Pi microcomputer and camera module; however, the work may be extended to other low-cost imaging devices. Two calibration procedures for absolute and relative luminance are presented, which require minimal equipment. To remove calibration equipment limitations, novel procedures were developed to characterize sensor linearity and vignetting, where the accurate characterization of sensor linearity allows the use of lower-cost and highly non-linear sensors. Overall, the resultant device has an average absolute luminance error of 6.4% and an average relative luminance error of 6.2%. The device has comparable accuracy and performance to other custom devices, which use higher-cost technologies and more expensive calibration equipment, and significantly reduces the cost barrier for luminance imaging and the better lighting it enables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.