Abstract

In the present research work, an algorithm of artificial neural network (ANN) has been developed based on the processing of digital images of Persian lemons with the aim of optimizing the quality control of the product. For this purpose, the physical properties (weight, thickness of the peel, diameter, length, and color) of 90 lemons selected from the company Esperanza de San José Ornelas SPR de RL (Jalisco, Mexico) were studied, which were divided into three groups (Category "extra", Category I, and Category II) according to their characteristics. The parameters of weight (26.50 ± 3.00 g), diameter/length (0.92 ± 0.08) and thickness of the peel (1.50 ± 0.29 mm) did not present significant differences between groups. On the other hand, the color (determined by the RGB and HSV models) presents statistically significant changes between groups. Due to the above, the proposed ANN correctly classifies 96.60% of the data obtained for each of the groups studied. Once the ANN was trained, its application was tested in an automatic classification process. For this purpose, a prototype based on the operation of a stepper motor was simulated using Simulink from Matlab, which is connected to three ideal switches powered by three variable pulse generators that receive the information from an ANN and provide the corresponding signal for the motor to turn to a specific position. Manual classification is a process that requires expert personnel and is prone to human error. The scientific development presented shows an alternative for the automation of the process using low-cost computational tools as a potential alternative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.