Abstract

Optical-ruler-based distance measurements are essential for tracking biomolecular processes in a wide range of analytical biochemical applications. The normally used Förster resonance energy transfer (FRET) ruler is not useful for investigating distance-dependent properties when distances are more than 10 nm. Driven by this limitation, we have developed a long-range surface-enhanced Raman spectroscopy (SERS) optical ruler using oval-shaped gold nanoparticles and Rh6G dye-modified rigid, variable-length double-strand DNAs. The bifunctional rigid dsDNA molecule serves as the SERS-active ruler. Our experimental results show that one can tune the length of the SERS ruler between 8 and ∼18 nm by choosing the size of the oval-shaped gold nanoparticles. A possible mechanism for our observed distance-dependent SERS phenomenon is discussed using the Gersten and Nitzan model. Ultimately, our long-range SERS molecular rulers can be an important step toward understanding distance-dependent biological processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.