Abstract

Topical delivery of small interfering RNA (siRNA) can be an attractive method for the treatment of skin diseases and improving the quality of life of patients. However, it is difficult for siRNA to pass through the two major barriers of the skin: the stratum corneum (SC) and tight junctions. We have previously reported that atopic dermatitis of skin without the SC can be efficiently treated by the intradermal administration of trans-activator of transcription (Tat) peptide and AT1002 (tight junction opening peptide). However, novel drug delivery systems are needed for effective SC penetration. Therefore, in the present study, we aimed to develop a lyotropic liquid crystalline (LC) system containing Tat and AT1002 for effective siRNA penetration through the SC. An LC formulation was prepared using selachyl alcohol and purified water, and its skin penetration ability was evaluated. No fluorescence was observed in mouse skin treated with a siRNA solution, as there was no intradermal localization of siRNA from naked siRNA. However, intradermal delivery of siRNA was remarkable and extensive with the LC formulation containing both Tat and AT1002. Semiquantitative analysis by brightness measurement revealed that the LC formulation containing both Tat and AT1002 had significantly enhanced intact skin permeability than other formulations. These results show that the functional peptides in the LC formulation increased SC penetration and intradermal delivery in the healthy skin. Therefore, this novel LC system may be useful in the treatment of various skin diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call