Abstract
Future space missions will include detectors and other components cooled to cryogenic temperatures by adiabatic demagnetization refrigerators (ADRs) coupled with mechanical cryocoolers. In such systems the ADRs require lightweight, low-current superconducting magnets. At least one of an ADR’s magnets must operate at the cryocooler’s coldest stage temperature. This temperature should be as high as possible in order to improve operating efficiency and design flexibility. We previously reported the development of a lightweight (1 kg) low-current (8 A) Nb 3Sn magnet which produces a 3 T central field at 10 K. We now report our progress in developing a new 10 K magnet of similar size made with smaller diameter Nb 3Sn wire which will produce a 4 T central field with approximately 5 A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.