Abstract

Atomic force microscopy (AFM) is a powerful technique to provide high resolution, three-dimensional data for measuring topography of samples. However, the scanning range of conventional AFM systems hardly exceeds hundreds of micrometers due to the piezoelectric actuation. In this research, we develop a large scanning-range AFM system with a z-scanner separated from the xy-scanner. The z-scanner actuated by piezoelectric stack provides high speed scanning and the homemade xy-scanner actuated by electromagnetic actuation is capable of 2 mm×2 mm large field positioning with 17 nm rms error. The overall AFM system consists of a commercial piezoelectric positioner, four sets of electromagnetic actuator, a monolithic parallel compliant mechanism, and an eddy current damper. Moreover, a compact disk/digital versatile disk pick-up-head (CD/DVD PUH) is applied to measure the amplitude of the cantilever. Furthermore, we design an adaptive complementary sliding mode controller to deal with the unknown parameters, unmodeled system uncertainties, and the external disturbances. Finally, preliminary experimental results demonstrate the capability of the proposed system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.