Abstract

A test facility was designed and constructed to study pulse detonation engine (PDE) operations under a broad range of test parameters and to test and refine various subsystems and processes that are critical for a flight-weight PDE. The PDE combustor was designed to run on most common fuels, including kerosene, propane and hydrogen, with air or oxygen. A new ignition system was also built that features multiple low energy igniters located at the head manifold section of the engine, creating an impinging shock ignition when fired simultaneously. Instead of a separate initiator, an energetic mixture can be introduced in the ignition section to facilitate deflagration-to-detonation transition. The main sections of the combustor were fitted with fully enclosed water cooling passages. Kerosene fuel was preheated before mixing with preheated air in a mixing chamber. The fuel‐air mixture and the purge air were injected into the engine at appropriate stages of the engine cycle using dual rotary valves, each having nine parallel ports. The fluid was injected into the combustor through ports located along the wall of the engine. The rotary valves were driven directly by a stepper motor. A pair of orifice plates were located downstream of the ignition zone for inducing deflagration-to-detonation transition. Dynamic pressure transducers and ion detectors were used for combustion diagnostics within the combustor. The various components of the engine were controlled via a data acquisition system, which was also used for monitoring the engine processes and for recording data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call