Abstract

A sensitive and label-free surface plasmon resonance (SPR) based sensor was developed in this work for the detection of milk allergens. β-lactoglobulin (BLG) protein was used as the biomarker for cow milk detection. This is to be used directly in final rinse samples of cleaning in-place (CIP) systems of food manufacturers. The affinity assay was optimised and characterised before a standard curve was performed in pure buffer conditions, giving a detection limit of 0.164 µg mL−1 as a direct binding assay. The detection limit can be further enhanced through the use of a sandwich assay and amplification with nanomaterials. However, this was not required here, as the detection limit achieved exceeded the required allergen detection levels of 2 µg mL−1 for β-lactoglobulin. The binding affinities of the polyclonal antibody for BLG, expressed by the dissociation constant (KD), were equal to 2.59 × 10−9 M. The developed SPR-based sensor offers several advantages in terms of label-free detection, real-time measurements, potential on-line system and superior sensitivity when compared to ELISA-based techniques. The method is novel for this application and could be applied to wider food allergen risk management decision(s) in food manufacturing.

Highlights

  • Milk allergies have been a major concern for public health, especially in children [1]

  • The gold chip was submerged in a degassed solution of 11-mecaptodecanoic acid dissolved in ethanol for at least 24 h, as the presence of oxygen can be detrimental to the formation of the self-assembly monolayer (SAM) layer

  • We successfully demonstrated the use of an surface plasmon resonance (SPR) biosensor in the detection of β-lactoglobulin

Read more

Summary

Introduction

Milk allergies have been a major concern for public health, especially in children [1]. A food allergic reaction is defined as an immune reaction to a constituent in a food product such as a protein through the production of immunoglobulin E (IgE) [2]. A key concern for food manufacturers is the detection of food allergen cross-contamination within wider food manufacturing processes, which involves resource-intensive steps such as swabbing food processing plants and routine testing of final products. It is known that relatively low levels of milk allergens can cause reactions in allergic individuals: this is indicated by the Voluntary Incidental Trace Allergen Labelling (VITAL) framework. The VITAL framework proposes that a reference dose of at least 0.1 mg of milk protein per consumer portion of product is a sufficient basis for food manufacturers to apply precautionary allergen labelling

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call