Abstract

In this work, a hyperelastic constitutive model is developed to describe the thermo-mechanical behavior of the Ti17 titanium alloy. The grain shape and the crystallographic orientation are explicitly taken into account. The behavior of both the α and β phases is modelled with a crystal plasticity formulation coupled to a CDM (Continuum Damage Model). The constitutive model is implemented in the ABAQUS/Explicit finite element solver with a user-defined subroutine. The model parameters are identified from experimental tests. According to the cutting simulation results, both strain localization and chip segmentation are strongly impacted by the crystallographic orientation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call