Abstract

Circulating tumor DNA (ctDNA) demonstrates great promise in the guidance of prognostication, diagnosis, and surveillance of cancers, which highlights the need for rapid and sensitive point-of-care testing (POCT) technologies. Hybridization chain reaction (HCR)-based optical biosensors provide excellent solutions due to their prominent features. However, the requirement of a sophisticated and expensive optical readout device, relatively long detection time, and heating hold back their scalability and clinical applications. Here, an innovative HCR-powered lab-on-fiber device (HCR-LOFD) was developed for rapid on-site detection of ctDNA with high sensitivity, specificity, and reproducibility. A LOFD with a compact all-fiber optical structure was constructed for the fluorescence detection of the HCR system. Combining HCR, fluorescence energy resonant transfer, and the evanescent wave fluorescence principle, HCR-LOFD achieved the quantitative detection of KRAS G12D, the 12th amino acid from glycine (Gly) mutated aspartate (Asp) and the most common mutation of KARS, in 5 min at room temperature based on end-point detection mode or real-time fluorescence detection mode. This new assay platform was also successfully applied for the direct detection of KRAS G12D in whole blood with simple dilution. The application of HCR-LOFD not only greatly simplifies the complexity of optical readout devices and improves their scalability but also potentially serves as a sample-to-answer solution for the detection of biomarkers in limited medical resource regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call