Abstract
This paper proposed a hybrid intelligent process model, based on a hybrid model combining the two-temperature model (TTM) and molecular dynamics simulation (MDS) (TTM-MDS). Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films [Physical Review B, 68, (064114):1–22.], and Gaussian process regression (GPR), for micro-electrical discharge machining (micro-EDM) were also used. A model of single-spark micro-EDM process has been constructed based on TTM-MDS model to predict the removed depth (RD) and material removal rate (MRR). Then, a GPR model was proposed to establish the relationship between input process parameters (energy area density and pulse-on duration) and the process responses (RD and MRR) for micro-EDM machining. The GPR model was trained, tested, and tuned using the data generated from the numerical simulations. Through the GPR model, it was found that micro-EDM process responses can be accurately predicted for the chosen process conditions. Therefore, the hybrid intelligent model proposed in this paper can be used for a micro-EDM process to predict the performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.