Abstract
This paper focuses on a two-dimensional (2-D) analytical model for a fast computation of magnetic losses due to eddy currents in the permanent magnets as well as iron losses in the ferromagnetic parts within coaxial magnetic gears. The magnetic field distribution is computed in yokes and permanent magnets by solving both Maxwell's equations, whereas for pole pieces, the magnetic field is computed by coupling the previous analytical model with a reluctance network model. Both the eddy current losses and iron losses are determined from this hybrid analytical model. The iron loss model takes into account the temporal and spatial variations of flux density. The eddy current loss model takes into account the magnet splitting. Results of this magnetostatic eddy current loss model are then compared to the results obtained with a 2-D magnetodynamic finite element model. A verification of validity limits is also proposed. The final function of this analytical model is to ensure integration into a set of models in the aim of a global mechatronic optimization of magnetic gears, for their insertion into multimegawatt wind turbines. A preliminary bi-objective, mass-efficiency optimization protocol is subsequently proposed along with an analysis of the computation time reduction via the presented models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.