Abstract

A biometry-based human eye model was developed by using the empirical anatomic and optical data of ocular parameters. The gradient refractive index of the crystalline lens was modeled by concentric conicoid isoindical surfaces and was adaptive to accommodation and age. The chromatic dispersion of homogeneous ocular media was described by Cauchy equations. The gradient equations for the refractive index of crystalline lens were modified at particular wavelengths according to the same dispersion model. Mie scattering was introduced to simulate volumetric light scattering in the crystalline lens. The optical performance of the eye model was evaluated in CodeV and ASAP and presented by the modulation transfer function (MTF) at single and multiple wavelengths. The chromatic optical powers obtained from this model matched that of physiological eyes. The scattering property was assessed by means of glare veiling luminance and compared with CIE general disability glare equation. This model is highly potential for investigating visual performance in ordinary lighting and display conditions and under the influence of glare sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.