Abstract
High-speed and high-accuracy control technology has been developed in Japan and applied to CNC (Computer Numerical Control) machine tools. Therefore, a CNC machine tool, which is made in Japan, has shown a successful history of its performance. Further development of these technologies is important for Japan to maintain its leadership in advanced manufacturing. The purpose of this research is to develop a high-speed and high-accuracy machining system. Two methods are implemented in the proposed prototype system. The first method is “geometric-model interpolation,” which is used to generate high-speed and highaccuracy command positions, and the second method is “predictive compensation,” which is used to correct machining errors. In the proposed prototype system, these errors are simulated preliminarily and compensated for in the servo data by controlling the position and the feed rate. This report describes the configuration of the proposed prototype system, and the performance of the prototype is evaluated by comparing its speed and accuracy with an existing commercial CNC machine tool. The results show that the prototype system is able to control a CNC machine tool with higher speed and greater accuracy than current CNC machine tool systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.