Abstract
The human leukocyte antigen (HLA) system plays a critical role in the human immune system and is strongly associated with immune recognition and rejection in organ transplantation. HLA typing method has been extensively studied to increase the success rates of clinical organ transplantation. However, while polymerase chain reaction sequence-based typing (PCR-SBT) remains the gold standard, cis/trans ambiguity and nucleotide sequencing signal overlay during heterozygous typing present a problem. The high cost and low processing speed of Next Generation Sequencing (NGS) also render this approach inadequate for HLA typing. To address these limitations of the current HLA typing methods, we developed a novel typing technology based on nucleic acid mass spectrometry (MS) of HLA. Our method takes advantage of the high-resolution mass analysis function of MS and HLAMSTTs (HLA MS Typing Tags, some short fragment PCR amplification target products) with precise primer combinations. We correctly typed HLA by measuring the molecular weights of HLAMSTTs with single nucleotide polymorphisms (SNPs). In addition, we developed a supporting HLA MS typing software to design PCR primers, construct the MS database, and select the best-matching HLA typing results. With this new method, we typed 16 HLA-DQA1 samples, including 6 homozygotes and 10 heterozygotes. The MS typing results were validated by PCR-SBT. The MS HLA typing method is rapid, efficient, accurate, and readily applicable to typing of homozygous and heterozygous samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.