Abstract

Increasing the rotational frequency of bladed rotors used in turbomachinery leads to their increased efficiency and performance. Especially for turbomolecular pumps, this would allow either higher compression rates or smaller pump dimensions. The maximal rotational frequency is focused on the structural strength of the construction and the material used. Due to their high density, specific strength, and stiffness in the fiber direction, carbon-fiberreinforced plastics (CFRPs) seem to be ideal for such an application. The highly orthotropic material behavior of CFRPs demands new approaches in terms of their manufacturing and dimensioning. As a new approach, a rotor with 17 blades in a blade-integrated disk construction (BLISK) made of a CFRP, allowing a 35% higher burst speed than a bladed rotor made of a high-strength aluminum alloy, was developed. An appropriate fiber layout has to reflect the rotational symmetry, which demands either a radial or tangential fiber orientation. Therefore, the Tailored Fiber Placement (TFP) technology was used, which allows a high flexibility for the fiber layout. For consolidation, resin infiltration was performed using a modified vacuum-assisted process, and the final geometry was generated employing a milling machine. A radius-dependent layer setup of tangential and radial fibers was chosen to maximize the burst speed by using an adapted finite-element analysis. Additionally, a numerical modal analysis and a numerical failure analysis were performed. Finally, the theoretical results were verified on manufactured rotors by an experimental modal analysis and burst tests, where experimental data showed a good coincidence with numerical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call