Abstract

Treatment options for COVID-19 remain limited. Here, we report the optimization of an siRNA targeting the highly conserved leader region of SARS-CoV-2. The siRNA was rendered nuclease resistant by the introduction of modified nucleotides without loss of activity. Importantly, the siRNA also retained its inhibitory activity against the emerged omicron sublineage variant BA.2, which occurred after the siRNA was designed and is resistant to other antiviral agents such as antibodies. In addition, we show that a second highly active siRNA designed against the viral 5′-UTR can be applied as a rescue molecule, to minimize the spread of escape mutations. We therefore consider our siRNA-based molecules to be promising broadly active candidates for the treatment of current and future SARS-CoV-2 variants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call