Abstract

BackgroundAcute myeloid leukemia (AML) is a malignant hematological neoplasm of myeloid progenitor cells. Mutations of FLT3 in its tyrosine kinase domain (FLT3-TKD) are found in ~ 8% of patients with AML, with D835Y as the most common substitution. This mutation activates survival signals that drives the disease and is resistant to the first generation FLT3 inhibitors. Development of a highly sensitive method to detect FLT3D835Y is important to direct therapeutic options, predict prognosis, and monitor minimal residual disease in patients with AML.Methods and resultsIn the present study, we developed a highly sensitive FLT3D835Y detection method by using the restriction fragment nested allele-specific PCR technique. The method consists of three steps: 1) initial amplification of DNA samples with PCR primers surrounding the FLT3D835Y mutation site, 2) digestion of the PCR products with restriction enzyme EcoRV that only cleaves the wild type allele, and 3) detection of FLT3D835Y by allele-specific PCR with nested primers. We were able to detect FLT3D835Y with a sensitivity of 0.001% by using purified plasmid DNAs and blood cell DNAs containing known proportions of FLT3D835Y. We analyzed blood cell DNA samples from 64 patients with AML and found six FLT3D835Y-positive cases, two of which could not be detected by conventional DNA sequencing methods. Importantly, the method was able to detect FLT3D835Y in a sample collected from a relapsed patient while the patient was in complete remission with negative MRD determined by flow cytometry. Therefore, our RFN-AS-PCR detected MRD after treatment that was missed by flow cytometry and Sanger DNA sequencing, by conventional methods.ConclusionsWe have developed a simple and highly sensitive method that will allow for detection of FLT3D835Y at a very low level. This method may have major clinical implications for treatment of AML.

Highlights

  • Acute myeloid leukemia (AML) is a malignant hematological neoplasm of myeloid progenitor cells

  • We have developed a simple and highly sensitive method that will allow for detection of FLT3D835Y at a very low level

  • Development of restriction fragment nested allele-specific polymerase chain reaction (PCR) (RFN-AS-PCR) for detection of FLT3D835Y The FLT3D835Y mutation corresponds to c.2503G > T in DNA and disrupts an EcoRV restriction site (GATATC to TATATC). This provides a convenient way for detection of FLT3D835Y using the so-called restriction fragment length polymorphism technique that has a sensitivity of around 1%

Read more

Summary

Introduction

Acute myeloid leukemia (AML) is a malignant hematological neoplasm of myeloid progenitor cells. Mutations of FLT3 in its tyrosine kinase domain (FLT3-TKD) are found in ~ 8% of patients with AML, with D835Y as the most common substitution. This mutation activates survival signals that drives the disease and is resistant to the first generation FLT3 inhibitors. Gain-of-function mutations of FLT3 include internal (2020) 8:30 tandem duplication (FLT3-ITD) and point mutations in the kinase domain (FLT3-TKD), each of which could lead to over-activated signals for proliferation and survival of leukemia cells [2, 17]. FLT3-TKD mainly includes the FLT3D835Y substitution and is found in ~ 7% of patients with AML [20, 21], FLT3 mutations could serve as important diagnostic and prognostic markers for AML. Several methods to detect FLT3-ITD have been developed [22], but convenient and sensitive methods to detect FLT3-TKD are still needed

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call