Abstract

A novel solid-phase microextraction (SPME) fiber was prepared by polymerization of an organic–inorganic hybrid polymeric coating on an anodized and derived Ti wire, and applied for the analysis of polycyclic aromatic hydrocarbons from environmental samples followed by high performance liquid chromatography (HPLC) analysis. A polyhedral oligomeric silsesquioxane (POSS) reagent containing methacryl substituent groups was used as an organic–inorganic hybrid cross-linker, and copolymerized with methyl methacrylate (MMA) to fabricate the hybrid coating via thermally initiated free radical polymerization in a glass capillary mold. The prepared fiber can be easily withdrawn from the glass capillary mold by controlling the polymerization conditions, especially polymerization solvent. A homogeneous and porous coating with thickness of about 100μm was achieved using ethanol as polymerization solvent at the mass ratio of MMA to POSS as 1:0.5. High chemical and mechanical stability, as well as excellent durability for more than 100 times extractions with almost undiminished extraction efficiency were achieved due to the chemical immobilization and crosslinked hybrid coating. The proposed fiber showed much better extraction performance than the 100μm commercial polydimethylsiloxane fiber for extracting PAHs from aqueous sample. The developed SPME-HPLC method for the determination of PAHs using the MMA–POSS hybrid coating achieved good linearity with good correlation coefficients (R=0.991–0.999) and low detection limits in the range of 0.006 to 0.05ngmL−1 (S/N=3). The proposed fiber was successfully applied to the extraction of PAHs from environmental water samples with recoveries of 82–104% for river water, 83–103% for pool water, and 79–98% for wastewater, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call