Abstract

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes global epidemics of a debilitating polyarthritis in humans. As there is a pressing need for the development of therapeutic agents, we screened 230 new mouse anti-CHIKV monoclonal antibodies (MAbs) for their ability to inhibit infection of all three CHIKV genotypes. Four of 36 neutralizing MAbs (CHK-102, CHK-152, CHK-166, and CHK-263) provided complete protection against lethality as prophylaxis in highly susceptible immunocompromised mice lacking the type I IFN receptor (Ifnar−/−) and mapped to distinct epitopes on the E1 and E2 structural proteins. CHK-152, the most protective MAb, was humanized, shown to block viral fusion, and require Fc effector function for optimal activity in vivo. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs (CHK-102+CHK-152 or CHK-166+CHK-152) limited the development of resistance and protected immunocompromised mice against disease when given 24 to 36 hours before CHIKV-induced death. Selected pairs of highly neutralizing MAbs may be a promising treatment option for CHIKV in humans.

Highlights

  • Chikungunya virus (CHIKV) infection causes a severe febrile illness in humans that is characterized by a debilitating polyarthritis, which can persist for months and cause significant morbidity [1,2]

  • We immunized Irf72/2 rather than wild type (WT) mice, as CHIKV replicated to higher titers, induced stronger neutralizing antibody responses, yet did not cause lethal infection in these innate immune-deficient animals ([31], and data not shown)

  • Neutralizing activity To assess the inhibitory potential of our anti-CHIKV monoclonal antibodies (MAbs) against the homologous CHIKV-LR and representative strains from the Asian and West African genotypes (RSU1 and IbH35 respectively), we performed focus reduction neutralization tests (FRNTs) on Vero cells

Read more

Summary

Introduction

Chikungunya virus (CHIKV) infection causes a severe febrile illness in humans that is characterized by a debilitating polyarthritis, which can persist for months and cause significant morbidity [1,2]. The mature virion is comprised of three structural proteins: a nucleocapsid protein and two glycoproteins, E1 and E2, where E2 functions in attachment to cells and E1 participates in virus fusion. Each 700 A CHIKV virion contains 240 copies of the envelope and capsid proteins, which are arranged in T = 4 quasiicosahedral symmetry. E1-E2 heterodimers assemble into 80 trimeric spikes on the virus surface [9]. X-ray crystallographic structures of the precursor pE3-E2-E1, mature E2-E1, and E1 proteins [10–13] have elucidated the architecture of the glycoprotein shell. Domain I (DI) is located between DII and DIII, the latter of which adopts an immunoglobulin-like fold. E2 localizes to a long, thin leaf-like structure on the top of the spike. The mature E2 protein contains three domains with immunoglobulin-like folds: the N-terminal domain A, located at the center; Author Summary

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.