Abstract

Cortisol is an important glucocorticoid in humans that regulates many physiological processes. Human 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone to cortisol in vivo and has emerged as an appealing therapeutic target for treating metabolic diseases. Here, we report a sensitive and robust high-throughput (HT) cell-based assay for screening 11beta-HSD1 inhibitors. This assay utilizes a HEK293 cell line transduced by a BacMam virus expressing human 11beta-HSD1. The enzyme activity in the cells was measured by quantifying cortisol levels released into the cell culture supernatant via a competitive homogenous time-resolved fluorescence (HTRF) method. We show that 11beta-HSD1 activity in supernatant of BacMam-transduced HEK293 cells increases with 11beta-HSD1 BacMam virus load in a dose-dependent manner, and is comparable to the enzyme activity detected in differentiated mouse adipocytes. In addition, we show that co-expression of hexose-6-phosphate dehydrogenase (H6PDH) is not required for the enzyme to function effectively as an oxo-reductase. This assay has been developed in low-volume 384-well format and it is sensitive, robust, and amenable to HT screening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call