Abstract

3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is still a widely used illicit designer drug and its detection in different matrices is of major importance for forensic purposes (e.g. driving under the influence) as well as for workplace drug testing or abstinence control. Established analytical methods for the determination of MDMA are mainly employing high performance liquid chromatography (HPLC) or gas chromatography (GC) coupled to mass spectrometric detection. Matrix assisted laser desorption/ionization-triple quadrupole-tandem mass spectrometry (MALDI-QqQ-MS/MS) is so far rarely used in forensics and offers an ultrafast high-throughput platform. The Quantisal™ Oral Fluid Collection Device was used for sample collection. After addition of the deuterated internal standard and a carbonate buffer (0.75 M Na2 CO3 ), oral fluid samples were liquid-liquid extracted (ButOAc/EtOAc, 1:1). As little as 1 microlitre of a mixture of this extract and the MALDI matrix (alpha-cyano-4-hydroxycinnamic acid) was spotted onto the MALDI plate and could directly be analyzed. With MALDI omitting chromatographic separation, very short analysis times of about 10 s per sample were possible. The method was developed and validated according to international guidelines including specificity, recovery, matrix effects, accuracy and precision, stabilities and limit of quantification. All validation criteria were fulfilled except for ion suppression/enhancement. Comparison with a routine liquid chromatography-tandem mass spectrometry (LC-MS/MS) method showed good agreement of the results. Applicability of the method was shown by analyzing about 250 oral fluid samples collected after controlled administration of 125 mg MDMA in a pharmacokinetic study. The whole lot of samples could be analyzed in less than 1 h, proving the ultra-high-speed of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.