Abstract

The mouse has emerged as a major experimental model system for examining the functional properties of the mammalian CNS; both during development and following CNS injury. Histologic procedures currently used to determine the relative position of structures within the CNS are presently limited in their ability to take full advantage of this system for surgical and morphometric procedures. We present here the first three-dimensional interactive digital atlas of the murine brain and skull for two genetically important strains of mice; 129S1/SvImJ and C57Bl/6J. The final resolution of these digital atlases is 54 μm3. These representations of the murine brain and skull, in conjunction with our development of a new, more dynamic master coordinate system, provide improved accuracy with respect to targeting CNS structures during surgery compared with previous systems. The interactive three-dimensional nature of these atlases also provide users with stereotactic information necessary to perform accurate “off-axis” surgical procedures, as is commonly required for experiments such as in vivo micro-electroporation. In addition, three-dimensional analysis of the brain and skull shape in C57Bl, 129Sv, CD1, and additional murine strains, suggests that a stereotactic coordinate system based upon the lambda and rostral confluence of the sinuses at the sagittal midline, provides improved accuracy compared with the traditional lambda–bregma landmark system. These findings demonstrate the utility of developing highly accurate and robust three-dimensional representations of the murine brain and skull, in which experimental outputs can be directly compared using a unified coordinate system. The aim of these studies is to enhance comparative morphometric analyses and stereotactic surgical procedures in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.