Abstract
A High Pressure Xenon ionization chamber is a promising radiation detector for environmental radiation measurement due to its radiation hardness, its physical rigidity, and its capability of operation at a high temperature up to about 170 °C. A cylindrical high pressure xenon ionization chamber, which was configured with a shielding mesh to improve its energy resolution, was designed on the basis of an electron transfer simulation code (EGSnrc) to extract an optimal density of Xe gas and a thickness of the chamber wall. An electron drift simulation code, Garfield, which was coupled with a Maxwell electric filed calculator, was also employed for the electron drift simulations due to the geometry of the shielding mesh. Shielding inefficiency was also calculated. A spherical ionization chamber was also designed and fabricated to monitor environmental radiation. A noble gas system was constructed to create a noble gas with a high purity and to inject the noble gas up to 60 atm. The combination of an oxygen absorbent (Oxisorb), a molecular sieve, and a high temperature getter can minimize the electro-negative impurities, such as the O2 and N2 gas, to below about several ppb levels. Preliminary tests such as leakage currents, saturation currents, and gas leak test were performed. The performance of the two fabricated ionization chambers at a low dose rate was tested by using a conventional shadow technique with a NIST certified 33.52 MBq 226Ra source in the calibration room at KAERI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.