Abstract

The formation of gas hydrates and subsequent plugging of pipelines are risks that need to be well understood during the production and transportation of oil and gas in subsea flowlines. These flowlines are typically operating at low temperature and high pressure conditions, which are well within the hydrate formation stability region. One of the key processes for hydrate plugs to develop is the agglomeration of hydrates. To obtain a more comprehensive understanding on this problem, we have developed a high-pressure micromechanical force (MMF) apparatus to directly measure cohesive forces between gas hydrate particles. The MMF system is housed in a stainless steel vessel that can withstand pressures of up to 10 MPa, thereby facilitating studies on a broad spectrum of hydrate formers and conditions. The MMF apparatus comprises of two cantilever fibers: one is stationary and another is manipulated via a nano-manipulator. Water droplets (~500 μm in diameter) are placed at the end of the each cantilever fiber so that they can be converted to hydrate. In order to demonstrate the stability of this apparatus, CH4/C2H6 (74.7 mol. %/25.3 mol. %) mixed hydrates were prepared at 2 MPa and -5 °C and annealed at 0 °C for 15 h. Subsequently, the hydrate particle cohesive force was measured at 2 °C. Compared with the cohesive force of cyclopentane hydrates in cyclopentane liquid (~4.3 mN/m), the average cohesive force of gas hydrates was about 10 times higher, ~43 mN/m. Studies using this new high pressure MMF apparatus will be central to better understand the agglomeration of hydrates in multiphase flowlines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.