Abstract

In order to observe quantum radiation pressure noise and reduce it by measuring the ponderomotively squeezed light on a table-top experiment, we are developing a laser interferometer with Fabry-Perot cavities with very small suspended mirrors. As a preliminary setup, we have constructed a Fabry-Perot cavity of finesse 1300 with a suspended mirror of 20 mg. The cavity was locked stably at low laser power for which the classical radiation pressure caused little effect on the dynamics of the small mirror. For the stable operation of this cavity with higher laser power, a technique to control the motion of the small mirror, especially its yaw motion, is necessary. We describe that the motion can be stabilized through the radiation pressure of light inside the cavity, by controlling the motion of the front mirror of a Fabry-Perot cavity properly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call