Abstract

A four-axis numerically controlled precision stage equipped with a high-frequency nanosecond pulsed Nd:YAG laser system was developed for processing grinding-damaged silicon wafers. The resulting specimens were characterised using a white-light interferometer, a micro-Raman spectroscope and a transmission electron microscope. The results indicate that around the laser beam centre where the laser energy density is sufficiently high, the grinding-induced amorphous silicon was completely transformed into the single-crystal structure. The optimum conditions for one- and two-dimensional overlapping irradiation were experimentally obtained for processing large-diameter silicon wafers. It was found that the energy density level required for completely removing the dislocations is higher than that for recrystallising the amorphous silicon. After laser irradiation, the surface unevenness has been remarkably smoothed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.