Abstract

One of the main challenges of analyzing intact proteins on an ion trap mass spectrometer is the mass range limitation, especially for miniature mass spectrometers. In this study, a high-field frequency scanning ion trap miniature mass spectrometer, namely the high-field "Brick" mass spectrometer, was developed to analyze intact proteins. A high-voltage broadband radio frequency (rf) amplifier was designed with a maximum output of 900 Vp-p over a frequency range of 130-700 kHz. Compared to the 600 Vp-p rf amplifier equipped in the conventional "Brick" mass spectrometer, the mass range of the instrument could be extended from 2000 to over 8000 Th. Sensitivity and mass resolution for native protein analyses were also evaluated and compared. Various proteins as well as their mixtures were analyzed on the high-field "Brick" mass spectrometer. The noncovalent interaction between protein-ligand complexes, lysozyme with triN-acetylchitotriose, was also analyzed. In addition, a hybrid ion scan mode was explored to further expand the mass range of the instrument at both low- and high-mass ends. In the hybrid ion scan mode, both rf frequency and amplitude were tuned, and a mass range from 100 to 12,000 Th was realized. As a result, both small drugs and proteins could be analyzed in a single mass scan. As proof-of-concept demonstrations, a mixture of atenolol and bovine serum albuminand oligomers of transferrin were analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call