Abstract

A high-brightness and low-divergence neutral beam is obtained for a Zeeman polarimetry of edge plasmas on JT-60U. The electron density and the pitch angle of the magnetic field line, thus the plasma current density distribution, can be measured by the Zeeman polarimetry using the lithium beam. A thermionic ion source heated by an electron beam is developed in order to obtain the ion beam current extraction over 10 mA. The beam optics is designed after detailed numerical simulation taking the space charge effects into account because a low-divergence angle of the neutral lithium beam leads to a narrow spectrum of the beam emission. It is also necessary to keep the beam radius small for good spatial resolution due to a long beam line of 6.5 m. The newly developed ion gun is operated on a test stand which simulates the diagnostic arrangement on JT-60U. The ion beam current of 10 mA at a beam energy of 10 keV is successfully extracted from the ion source operated at the temperature over 1300 degrees C and focused by Einzel lens. The full width at half maximum radius of the ion beam at the neutralizer is about 9 mm. A sodium vapor neutralizer neutralizes the collimated ion beam fully at the temperature of 300 degrees C. The neutral beam profiles are measured at two locations of the beam line at Z=2.3 m (beam monitor position) and Z=6.5 m (plasma region). The half-width at half maximum radius of the neutral beam of 26 mm and the equivalent beam current of 3 mA with the beam divergence angle of 0.2 deg which is the half-angle divergence are obtained. Those parameters satisfy the requirements of the Zeeman polarimetry. Furthermore, a long pulse extraction with a current of 10 mA and duration of 50 s is attained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call