Abstract
With the development of microelectronics, power density continues to rise, which has put forward higher requirements for the thermal management. At present, the microchannel heat sinks have been investigated as an efficient way for heat dissipation for a long time. However, the optimization of microchannel heat sink is always concentrated on two-dimensional plane structure. In this paper, we proposed a hierarchical microchannel heat sink for heat transfer enhancement. Taking micro pin fin as an example, we designed three different hierarchical pin fins, and the model with the best performance is obtained through simulation under the Reynolds number from 1500 to 5500. The hierarchical heat sink shows better heat transfer performance than traditional heat sink, which is attributed to the flow field reconstruction with no significant increase in pressure drop. Typically, when the upper size (Wp1) of hierarchical pin fin increases to 375 μm, the maximum Nusselt number reaches 21 with the thermal performance factor up to 1.03 under the Reynolds number of 5500. Experimentally, three sizes of pin fins have been prepared and examined, and the results show that the heat loads exceeding 700 W/cm2 can be dissipated with the maximum temperature rise of 52 K, which is well matched with the simulation results. Anyway, the proposed in this work shows great potential in heat dissipation of electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.