Abstract

A heat shock inducible and inheritable RNA interference (RNAi) system was developed in the silkworm ( Bombyx mori). RNAi transgenic silkworms were generated by injecting silkworm eggs with a piggyBac transposon plasmid carrying RNAi sequence against target gene driven by the Drosophila heat shock protein 70 (HSP70) promoter and the helper plasmid expressing piggyBac transposase. The transgenic EGFP gene and the endogenous eclosion hormone (EH) gene were chosen respectively as the target genes. In the RNAi transgenic silkworms, heat shock at 42 °C significantly and specifically reduced the expression of EGFP or EH gene in silkworms according to the corresponding RNAi targeting sequence but not in silkworms with the irrelevant RNAi sequence demonstrating the efficiency and specificity of the RNAi effect. Heat shock in the pupal stage hampered pupal–adult eclosion and reduced egg fertility in EH RNAi transgenic silkworms but not in the wild type or EGFP RNAi transgenic silkworms. The establishment of this heat inducible and inheritable conditional RNA interference system in silkworms provided an approach for the first time to dissect the functions of target genes in silkworms at different stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.