Abstract

Electroencephalography (EEG) is the recording of electrical activity of the brain. The 10–20 system is the standard electrode location method used to acquire EEG data, which uses 21 electrodes to record the electrical activity of the brain. Patient preparation and correct electrode placement are important to obtain reliable outputs. The current 10–20 system consumes greater time for patient preparation and also causes discomfort due to a higher number of electrodes being used or wearing an uncomfortable cap. This paper focuses on reducing the number of electrodes, thus reducing patient discomfort as well as preparation time. Advancement in the field of hardware and software processing has led to the utilization of brain waves for communication between human and the computer. This work deals with EEG-based Brain–Machine Interface (BMI) intended for designing a portable single-channel EEG signal acquisition system. EEG signal was acquired using the data acquisition module [National Instruments (NI) myDAQ] and the signal was viewed in the NI Laboratory Virtual Instrument Engineering Workbench (LabVIEW) environment. It was observed that the peak-to-peak amplitude of alpha, beta and theta waves changes in accordance with the activity the subjects performed. Thus, the developed instrument was tested on 10 different subjects to acquire the alpha, beta and theta waves by performing different activities. From the results, it can be concluded that the developed system can be used for studying a person’s brain waves (alpha, beta and theta) based on the activity performed by the subject with a limited number of electrodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call