Abstract

A modified beef hamburger patty enriched in polyunsaturated n−3 fatty acids and α-tocopherol was developed using technological procedures. Raw meat was obtained from low-cost parts of beef carcasses (brisket and flank) to which visible fat and connective tissue was manually eliminated and substituted by a mixture of pre-emulsified olive, corn, and deodorized fish oil. The developed product was analyzed and compared to conventional beef hamburger patties for their proximate composition, fatty acid profile, and consumer acceptability. The effects of cooking on the fat content and fatty acid profile of the developed product were investigated. Additionally, the lipid oxidation and surface color stability of modified and conventional hamburgers were investigated during 8 days of refrigerated storage while packaged in a modified atmosphere (20%/80% CO2/O2) and subsequently cooking. The developed product showed significantly lower total fat, cholesterol, sodium, and calorie content than beef hamburger patties manufactured using conventional procedures. In addition, the polyunsaturated fatty acids/saturated fatty acids and n−6/n−3 ratios matched nutritional recommendations more closely. No evidence of lipid oxidation was found for the modified hamburger patties during 8-day storage period, and surface color, especially redness, was more stable than in conventional ones. Additionally, consumer acceptability of the developed patty after it was cooked was acceptable and similar to that of conventional products. The modified hamburger patty developed by technological methods is viable and can be considered a useful food to preclude nutritional disorders or to assist in nutritional regimens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call