Abstract
We have developed and tested a GSO (gadolinium oxyorthosilicate) position-sensitive gamma detector which can be used with positron and single-photon radionuclides for imaging breast cancer or sentinel lymph node detection. Because GSO has a relatively good energy resolution for annihilation gammas as well as low energy gamma photons, and does not contain any natural radioisotopes, it can be used for positron imaging and lower energy single-photon imaging. The imaging detector consists of a GSO block, 2 inch square multi-channel position-sensitive photo-multiplier tube (PSPMT), and associated electronics. The size of a single GSO element was 2.9 mm × 2.9 mm × 20 mm and these elements were arranged into 15 × 15 matrixes to form a block that was optically coupled to the PSPMT. It was possible to separate all GSO crystals into a two-dimensional position histogram for annihilation gammas (511 keV) and low energy gamma photons (122 keV). The typical energy resolution was 24% FWHM and 37% FWHM for 511 keV and 122 keV gamma photons, respectively. For the positron imaging, coincidence between the imaging detector and a single gamma probe is measured. For the single-photon imaging, a tungsten collimator is mounted in front of the imaging detector. With this configuration, it was possible to image both positron radionuclides and low energy single-photon radionuclides. We measured spatial resolution and sensitivity as well as image quality of the developed imaging detector. Results indicated that the developed imaging detector has the potential to be a new and useful instrument for nuclear medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.