Abstract

Keratinases specifically degrade insoluble keratin waste, thus contributing to environmental protection and sustainable biomass development. However, their industrial application is hindered by inefficient enzyme production and poor biomass generation. In this study, the heterologous expression of keratinase was found to have cytotoxicity and might block host cell growth due to its proteolytic property. To address this problem, an autoregulatory expression system based on quorum sensing was developed to synergistically regulate cell growth and keratinase production in Bacillus subtilis. The growth-dependent promoter PaprE was chosen and shown to be effective in delaying keratinase production while promoting host cell proliferation. Copy number screening and core region mutations further balanced the two states. Carbon supplement optimization indicated that addition of 2% glucose facilitated biomass accumulation during the early stage of fermentation. Cell density increased to 15.6 (OD600nm) from 8 with keratinase activity raised to 4200 U·mL-1 from 1162 U·mL-1. Keratinase was then utilized in the bioconversion of feather waste to prepare soluble keratins, polypeptides, and amino acids. This study provides a powerful system for efficient production of keratinase and paves the way for keratin waste recycling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.