Abstract

An instrument for measuringtropospheric OH/HO2 radicals by laser-inducedfluorescence developed in our laboratory is presentedin detail. It is based on FAGE (fluorescence assay bygas expansion) technique and OH is both excited anddetected at 308 nm corresponding to its A-X(0,0) band.The alignment of the laser beam, the design of thesample gas inlet, and the devices for the fluorescencedetection are optimized so as to reduce the backgroundsignal while keeping the OH sensitivity as high aspossible. A thermalized position of the expanding gasbeam is probed in our system and we did not observe asevere decrease of the HOx sensitivities under humidconditions. An optical fiber is used for deliveringthe laser light to the fluorescence detection cellmounted outside at a high position. Thus the laserbeam alignment is by far simplified and is made highlyreproducible, once settled properly. For thecalibration, two methods are employed: a system withlaser absorption measurements of OH and a system ofsimultaneous photolysis of H2O and O2. Thecalibration factors are compared well within thecombined uncertainty. Using the latter system, theconversion efficiency of HO2 to OH by NO additionis measured to be around 90%. The detection limitsfor OH and HO2 (S/N = 2) are estimated to be3.3 × 106 and 3.6 × 106cm−3 at noon,respectively, with an integration time of 1 min. Theresults of test observations at our institute are alsopresented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.