Abstract

Development of an efficient and durable bridge deck system is a priority for most highway departments worldwide. This paper summarizes the results of an experimental program designed to study the behaviour of innovative glass-fiber-reinforced-polymer (GFRP) bridge deck modules and their transverse connection. The deck consisted of a number of triangular filament-wound tubes bonded with epoxy resin. Pultruded GFRP laminates were adhered to the top and bottom of the tubes to create one modular unit. The experimental program described in this paper discusses the evolution of the last two generations of the bridge deck. The description of the first and second deck generations was presented in an earlier paper. For the third-generation GFRP deck, a full-scale prototype specimen was subjected to 2 × 106 cycles at 135% of the service load level and was tested to failure afterward. The fourth-generation bridge deck system was fabricated by optimizing the weight of the deck section and then tested to failure. The performance was evaluated on the basis of load capacity, failure mode, deflection at service load level, and stiffness degradation under cyclic loading. Another phase of the work was to establish a means of connecting adjacent deck panels. A GFRP shear key was designed, manufactured, and installed in a full-scale deck module to address this need. Assessment of the structural adequacy in both resisting repeated loading and transmitting loads between adjacent deck modules is presented. The GFRP deck system with and without the shear key was capable of resisting 2 × 106 cycles of an equivalent American Association of State Highway and Transportation Officials HS30-design truck wheel load plus the dynamic load allowance of the bridge deck.Key words: bridge decks, advanced composite materials, shear key, glass fibers, fiber-reinforced polymers, filament winding, pultrusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call