Abstract

Diatom aggregation is substantial for organic carbon flux from the photic zone to deeper waters. Many heterotrophic bacteria ubiquitously found in diverse marine environments interact with marine algae and thus impact organic matter and energy cycling in the ocean. In particular, Marinobacter adhaerens HP15 induces aggregate formation while interacting with the diatom, Thalassiosira weissflogii. To study this effect at the molecular level, a genetic tool system was developed for strain HP15. The antibiotic susceptibility spectrum of this organism was determined and electroporation and conjugation protocols were established. Among various plasmids of different incompatibility groups, only two were shown to replicate in M. adhaerens. 1.4×10−3 transconjugants per recipient were obtained for a broad-host-range vector. Electroporation efficiency corresponded to 1.1×105CFU per μg of DNA. Transposon and gene-specific mutageneses were conducted for flagellum biosynthetic genes. Mutant phenotypes were confirmed by swimming assay and microscopy. Successful expression of two reporter genes in strain HP15 revealed useful tools for gene expression analyses, which will allow studying diverse bacteria–algae interactions at the molecular level and hence to gain a mechanistic understanding of micro-scale processes underlying ocean basin-scale processes. This study is the first report for the genetic manipulation of a Marinobacter species which specifically interacts with marine diatoms and serves as model to additionally analyze various previously reported Marinobacter–algae interactions in depth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.