Abstract

Cardiovascular diseases (CVD) are top killers with heart failure as one of the most leading cause of death in both developed and developing countries. In Nigeria, the inability to consistently monitor the vital signs of patients has led to the hospitalization and untimely death of many as a result of heart failure. Fuzzy logic models have found relevance in healthcare services due to their ability to measure vagueness associated with uncertainty management in intelligent systems. This study aims to develop a fuzzy logic model for monitoring heart failure risk using risk indicators assessed from patients. Following interview with expert cardiologists, the different stages of heart failure was identified alongside their respective indicators. Triangular membership functions were used to fuzzify the input and output variables while the fuzzy inference engine was developed using rules elicited from cardiologists. The model was simulated using the MATLAB® Fuzzy Logic Toolbox.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.