Abstract
In this paper we present OvaExpert, an intelligent system for ovarian tumor diagnosis. We give an overview of its features and main design assumptions. As a theoretical framework the system uses fuzzy set theory and other soft computing techniques. This makes it possible to handle uncertainty and incompleteness of the data, which is a unique feature of the developed system. The main advantage of OvaExpert is its modular architecture which allows seamless extension of system capabilities. Three diagnostic modules are described, along with examples. The first module is based on aggregation of existing prognostic models for ovarian tumor. The second presents the novel concept of an Interval-Valued Fuzzy Classifier which is able to operate under data incompleteness and uncertainty. The third approach draws from cardinality theory of fuzzy sets and IVFSs and leads to a bipolar result that supports or rejects certain diagnoses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.