Abstract

A fully automated solid phase microextraction (SPME) depletion method was developed to study the partition coefficient of organic compound between complex matrix and water sample. The SPME depletion process was conducted by pre-loading the fiber with a specific amount of organic compounds from a proposed standard gas generation vial, and then desorbing the fiber into the targeted samples. Based on the proposed method, the partition coefficients (Kmatrix) of 4 polyaromatic hydrocarbons (PAHs) between humic acid (HA)/hydroxypropyl-β-cyclodextrin (β-HPCD) and aqueous sample were determined. The results showed that the logKmatrix of 4 PAHs with HA and β-HPCD ranged from 3.19 to 4.08, and 2.45 to 3.15, respectively. In addition, the logKmatrix values decreased about 0.12–0.27 log units for different PAHs for every 10°C increase in temperature. The effect of temperature on the partition coefficient followed van’t Hoff plot, and the partition coefficient at any temperature can be predicted based on the plot. Furthermore, the proposed method was applied for the real biological fluid analysis. The partition coefficients of 6 PAHs between the complex matrices in the fetal bovine serum and water were determined, and compared to ones obtained from SPME extraction method. The result demonstrated that the proposed method can be applied to determine the sorption coefficients of hydrophobic compounds between complex matrix and water in a variety of samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.