Abstract

A frequency-shifted feedback (FSF) laser in combination with an interferometer is a very accurate range sensing tool. In this paper, an FSF fiber laser with an output spectrum in the 777.5 nm range is presented. The cavity of the laser works in the 1555 nm range, enabling the use of cheap standard telecom products. Since a wavelength of 1555 nm is not detectable with silicon semiconductor devices, the output of the laser is frequency-doubled by a periodically poled lithium niobate (PPLN) crystal, which shifts the output spectrum from 1555 nm to 777.5 nm. It could be shown that frequency doubling is a feasible way to shift the output spectrum of the laser to a range which is detectable by silicon, without destroying the special properties of the FSF laser.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.