Abstract

This study developed a novel assessment framework to analyze long-term energy transition in the road transport sector in which various technology options, market shares, policy measures, costs, and greenhouse gas emissions are considered in a single framework analysis. A data-intensive model was developed with the Low Emissions Analysis Platform (LEAP) and used to analyze policy scenarios up to 2050 for Alberta, Canada, a hydrocarbon-rich province with an emission-intensive energy sector. Three key policy measures – carbon pricing, zero-emission vehicle sales mandate, and incentivization – were analyzed in nine individual and combined policy scenarios. The transition to both hydrogen fuel cell electric vehicles and battery electric vehicles was assessed for all vehicle categories. Each fuel's full energy supply chain was modelled, including resource extraction, conversion, transmission and distribution, and fuelling, allowing for final and primary energy analysis. The findings show that carbon price and zero-emission vehicle incentives do not effectively lower greenhouse gas emissions on their own; zero-emission vehicle mandates are needed to transition the sector to a low-carbon energy system. The system-wide greenhouse gas emission footprints of hydrogen and battery electric vehicles are significantly below conventional vehicles in all cases. Scenarios biased towards battery electric vehicles had the most favorable results. The greenhouse gas emission footprint of hydrogen vehicles supplied by auto-thermal reforming with 91% carbon capture was lower than for battery electric vehicles powered by a primarily natural gas-based power grid. The findings on the effectiveness of carbon prices, incentives, and vehicle mandates should be considered by government policymakers aiming to reduce greenhouse gas emissions, infrastructure planners, and other energy stakeholders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call