Abstract

In this study, a four-phase remedial scheme was developed for in situ cleanup of petroleum-hydrocarbon contaminated soils. The developed remedial scheme contained the following four phases: surfactant flushing, groundwater flushing, chemical oxidation using KMnO4 as the oxidant, and enhanced bioremediation. Laboratory bench-scale experiments were performed to evaluate the effectiveness of this developed remedial scheme on the treatment of diesel oil contaminated soils. In the surfactant and groundwater flushing batch experiment (the first and second phases), biodegradable surfactant, Simple Green (SG) (5% by weight) was applied to flush diesel oil contaminated soils with initial total petroleum-hydrocarbon (TPH) concentration of approximately 31,500 mg kg-1. Results show that more than 90% of TPH could be removed after flushing with 40 pore volumes (PVs) of SG, followed by 25 PVs of groundwater. In the KMnO4 oxidation experiment (third phase) with initial soil TPH concentration at approximately 4,900 mg kg-1, up to 65% of TPH removal efficiency can be obtained when 1% by weight of KMnO4 was applied for oxidation. Results also reveal that the slight increase in TPH removal was observed in experiments with SG addition (0.1% by volume) owing to increased dissolution and desorption of TPH from soils. In the enhanced bioremediation (fourth phase) batch experiments, a petroleum-hydrocarbon degrading bacterium was isolated from the soil materials after the KMnO4 oxidation experiments and identified as Pseudomonas sp. via biochemical tests and further confirmation of DNA sequencing. Results from biodegradation experiments indicate that the isolated bacterium, which survived after KMnO4 oxidation process, was capable of degrading TPH caused by diesel oils, and caused the TPH to drop from 2,105 to 487 mg kg-1 within 15 days of incubation. The effectiveness of the four-phase remedial scheme was further confirmed by a semicontinuous batch experiment. Results from this study indicate that the four-phase scheme is a promising technology for the treatment of petroleum-hydrocarbon contaminated soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call