Abstract

Knowing the forces applied to the pedals during a cycling activity is of great importance in the field of biomechanics when calculating the loads acting on the joints. A load cell-based force sensor was designed for this purpose since the force plate fixed to the floor in gait laboratories cannot be used to measure the reaction forces on the bicycle pedal due to physical constraints. To investigate the accuracy and precision of the force plate, a two-stage experiment, static and dynamic force measurement tests were designed. First, the first static measurements were carried out with standard loads of 1000 g, 1200 g, 1500 g. To understand the behavior of the sensors under dynamic loading, dynamic measurements were conducted while the designed force sensor is attached to the bike pedal while using a commercially available power meter simultaneously to cross-validate the measured forces. Standard loads of 1000 g, 1200 g, and 1500 g were measured as 1020 ± 2 g, 1196 ± 2 g, and 1512 ± 1 g respectively. To assess the agreement between measurements Bland-Altman plot analysis was carried out. The Bland-Altman plots showed that the force platform is appropriate for both measuring static loads and dynamic loads. The collected data via this custom-made, affordable force sensor was successfully fed into the biomechanical modeling software to calculate the joint reaction forces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call