Abstract

Spudcans are typical foundations used in shallow to moderate-depth water oil and gas fields to support jack-up drilling units. Understanding the behaviour of spudcans under combined loadings is crucial to the overall response of the jack-up structure. This paper presents the development of a strain-hardening plasticity model for a spudcan footing on loose sand. Most of the model components are developed from direct centrifuge observations. The centrifuge tests were performed at an acceleration of 100 times that of the Earth’s gravity on a model spudcan footing subjected to combined vertical, horizontal, and moment loads. All the experiments have been designed and conducted to allow the results to be interpreted with a strain-hardening plasticity framework. Combined loads were applied by using a novel apparatus, which enables independent vertical, horizontal, and rotational movements of the footing. Test results also revealed the existence of a three dimensional sliding surface that intersects with the conventional yield surface. This additional surface has been defined analytically. Retrospective simulation of the experimental data using the plasticity model confirms the model’s capability for use in predicting the behaviour of larger spudcan applications offshore.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.