Abstract
One of the most powerful tools for receptor research and drug discovery is the use of receptor–ligand affinity screening of combinatorial libraries. Early work involved the use of radioactive ligands to identify a binding event; however, there are numerous limitations involved in the use of radioactivity for high throughput screening. These limitations have led to the creation of highly sensitive, nonradioactive alternatives to investigate receptor–ligand interactions. Pall Gelman Laboratory has introduced the AcroWell, a patented low-fluorescent-background membrane and sealing process together with a filter plate design that is compatible with robotic systems. Taken together, these allow the AcroWell 96-well filter plate to detect trace quantities of lanthanide-labeled ligands for cell-, bead-, or membrane-based assays using time-resolved fluorescence. Using europium-labeled galanin, we have demonstrated that saturation binding experiments can be performed with low-background fluorescence and signal-to-noise ratios that rival traditional radioisotopic techniques while maintaining biological integrity of the receptor–ligand interaction. In addition, the ability to discriminate between active and inactive compounds in a mock galanin screen is demonstrated with low well-to-well variability, allowing reliable determination of positive hits even for low-affinity interactions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.