Abstract

Human immunodeficiency virus integrase (HIV-1 IN) inhibitors that are currently approved or are in advanced clinical trials specifically target the strand transfer step of integration. However, considerable cross-resistance exists among some members of this class of IN inhibitors. Intriguingly, though, HIV-1 IN possesses multiple sites, distinct from those involved in the strand transfer step, that could be targeted to develop new HIV-1 IN inhibitors. We have developed a fluorescent HIV-1 IN DNA binding assay that can identify small molecules termed IN binding inhibitors (INBIs) that inhibit IN binding to viral DNA. This assay has been optimized with respect to concentrations of each protein, long terminal repeat (LTR) DNA substrate, salt, and time, and has been used successfully to measure the HIV-1 IN DNA binding activity of a well-characterized INBI termed FZ41. In addition, we have used the assay to screen a small library of natural products, resulting in the identification of nigranoic acid as a new INBI. The proposed fluorescence assay is easy and inexpensive, and provides a high-throughput detection method for determination of HIV-1 IN DNA binding activity, monitoring of enzyme kinetics, and high-throughput screening for the identification of new INBIs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.