Abstract

A method based on fluid dynamic gauging (FDG) was developed to investigate the membrane fouling behavior of streams containing dissolved wood components and small particles extracted using a mild steam explosion pretreatment. Industrially chipped softwood was subjected to saturated steam at 7bar for 20min, followed by cross-flow filtration of steam explosion liquors using 10kDa polysulfone membranes at 2bar transmembrane pressure. The results showed a severe decline in permeate flux during the initial stages of the cross-flow filtration. The FDG profiles from five filtration experiments revealed that thicker fouling layers were formed during initial fouling on pristine membranes compared to subsequent fouling on non-pristine membranes. The difference in fouling behavior suggests that cake layer formation was dominant during initial fouling, whereas pore blocking was more pronounced during refouling. This study highlights how FDG can be used to gain a better mechanistic understanding of the fouling behavior of extracted wood components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call