Abstract

Abstract : In the current work, we have implemented a numerical solver on the Graphic Processing Units (GPU) to solve the reactive Euler equations with detailed chemical kinetics. The solver incorporates high-order finite volume methods for solving the fluid dynamical equations and an implicit point solver for the chemical kinetics. Generally, the computing time is dominated by the time spent on solving the kinetics which can be benefitted from the computing power of the GPUs. Preliminary investigation shows that the performance of the kinetics solver strongly depends on the mechanism used in the simulations. The speed-up factor obtained in the simulation of an ideal gas ranges from 30 to 55 compared to the CPU. For a 9-species gas mixture, we obtained a speed-up factor of 7.5 to 9.5 compared to the CPU. For such a small mechanism, the achieved speed-up factor is quite promising. This factor is expected to go much higher when the size of the mechanism is increased. The numerical formulation for solving the reactive Euler equations is briefly discussed in this paper along with the GPU implementation strategy. We also discussed some preliminary performance results obtained with the current solver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.